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Introduction

Let C � tC1, C2, . . . , Cmu be a collection of n � n matri-
ces with elements in F, where F is the field R of real numbers
or the field C of complex numbers. If there is a nonsingular ma-
trix R such that R�CiR are all diagonal, the collection C is then
said to be simultaneously diagonalizable via congruence, where R�

is the conjugate transpose of R if Ci are Hermitian and simply the
transpose of R if Ci are either complex or real symmetric matri-
ces. Moreover, if there exists a nonsingular matrix S such that
S�1CiS is diagonal for every i � 1, 2, . . . , m then C is called si-
multaneously diagonalizable via similarity, shortly SDS. For con-
venience, throughout the dissertation we use “SDC” to stand for
either “simultaneously diagonalizable via congruence” or “simulta-
neous diagonalization via congruence” if no confusion will arise. The
SDS problem is well-known and is completely solved. But the SDC
problem is still open in some senses. The SDC of C implies that
a single change of basis x � Ry, makes all the quadratic forms
x�Cix simultaneously become the canonical forms. Specifically, if
R�CiR � diagpαi1, αi2, . . . , αinq is the diagonal matrix with diag-
onal elements αi1, αi2, . . . , αin, then x�Cix is transformed to the
sum of squares y�pR�CiRqy � °n

j�1 αij |yj |2, for i � 1, 2, . . . , m.

This is one of the properties connecting the SDC of matrices with
many applications such as variational analysis [31], signal processing
[14], [52], [62], quantum mechanics [57], medical imaging analysis
[2],[13],[67] and many others, please see references therein. Espe-
cially, the SDC suggests a promising approach for solving quadrat-
ically constrained quadratic programming (QCQP) [17], [74, [5].
In recent studies by Ben-Tal and Hertog [6], Jiang and Li [37],
Alizadeh [4], Taati [54], Adachi and Nakatsukasa [1], the SDC of
two or three real symmetric matrices has been efficiently applied
for solving QCQP with one or two constraints. Ben-Tal and Her-
tog [6] showed that if the matrices in the objective and constraint
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functions are SDC, the QCQP with one constraint can be recast
as a convex second-order cone programming (SOCP) problem; the
QCQP with two constraints can also be transformed into an equiv-
alent SOCP under the SDC together with additional appropriate
assumptions. We know that the convex SOCP is solvable efficiently
in polynomial time [4]. Jiang and Li [37] applied the SDC for
some classes of QCQP including the generalized trust region sub-
problem (GTRS), which is exactly the QCQP with one constraint,
and its variants. Especially the homogeneous version of QCQP,
i.e., when the linear terms in the objective and constraint func-
tions are all zero, is reduced to a linear program if the matrices are
SDC. Salahi and Taati [54] derived an efficient algorithm for solving
GTRS under the SDC condition. Also under the SDC assumption,
Adachi and Nakatsukasa [1] compute the positive definite interval
I¡pC0, C1q � tµ P R : C0 � µC1 ¡ 0u of the matrix pencil and
propose an eigenvalue-based algorithm for a definite feasible GTRS,
i.e., the GTRS satisfies the Slater condition and I¡pC0, C1q � H.

Those important applications stimulate various studies on the
problem, that we call the SDC problem in this dissertation. It is to
find conditions on tC1, C2, . . . , Cmu ensuring the existence of a con-
gruence matrix R for the SDC problem of real symmetric matrices
[70], [27], [41], [65], [37], the SDC problem of complex symmetric
matrices [34], [11] and the SDC problem of Hermitian matrices [74],
[7], [34]. However, for the real setting, the best SDC results so far
can only solve the case of two matrices while the case of more than
two matrices is solved under the assumption of a positive semidefi-
nite matrix pencil [37]. On the other hand, for the SDC problem of
complex matrices, including the complex symmetric and Hermitian
matrices, can be equivalently rephrased as a simultaneous diagonal-
ization via similarity (SDS) problem m [74], [7], [8], [11] . More
importanly the obtained results do not include algorithms for find-
ing a congruence matrix R, except for the case of two real symmetric
matrices by Jiang and Li [37]. Those unsolved issues inspire us to
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investigate, in this dissertation, algorithms for determining whether
a class C is SDC and compute a congruence matrix R if it indeed is.

The SDC problem was first developed by Weierstrass [70] in
1868. He obtained sufficient SDC conditions for a pair of real sym-
metric matrices. Since then, several authors have extended those
results, including Muth 1905 [45], Finsler 1937 [18], Albert 1938 [3],
Hestenes 1940 [28], and various others. See, for example, [12], [27],
[29], [30], [34],[44], [65]. The results for two matrices obtained so far
can be shortly reviewed as follows. If at least one of the matrices
C1, C2 is nonsingular, referred to as a nonsingular pair, suppose it is
C1, then C1, C2 are SDC if and only if C�1

1 C2 is similarly diagonal-
izable [27], see also [64], [65]. If the non-singularity is not assumed,
the obtained SDC results of C1, C2 were only sufficient. Specifically,

a) if there exist scalars µ1, µ2 P R such that µ1C1 � µ2C2 ¡ 0,

then C1, C2 are SDC [30], [65];

b) if tx P Rn : xT C1x � 0u X tx P Rn : xT C2x � 0u � t0u then
C1, C2 are SDC [44], [59], [65].

Actually, the classical Finsler theorem [18] in 1937 indicated that
these two conditions a) and b) are equivalent whenever n ¥ 3. It
has to wait until Hoi [74] in 1970 and independently Becker [5] in
1980 for a necessary and sufficient SDC condition for a pair of Her-
mitian matrices. Unfortunately, when more than two matrices are
involved, none of those aforementioned results remains true. In 1990
and 1991, Binding [7],[8] provided some equivalent conditions, which
link to the generalized eigenvalue problem and numerical range of
Hermitian matrices or to the generalized eigenvalue problem, for
a finite collection of Hermitian matrices to be SDC by a unitary
matrix. However there is still lack of algorithms for finding a con-
gruence matrix R. In 2002, Hiriart-Urruty and M. Torki [29] and
then, in 2007, Hiriart-Urruty [30] proposed an open problem to find
sensible and “palpable” conditions on C1, C2, . . . , Cm ensuring they
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are simultaneously diagonalizable via congruence. In 2016 Jiang and
Li [37] obtained a necessary and sufficient SDC condition for a pair
of real symmetric matrices and proposed an algorithm for finding
a congruence matrix R if it exists. Nevertheless, we find that the
result of Jiang and Li [37] is not complete. A missing case not con-
sidered in their paper is now added to make it up in this dissertation.
For more than two matrices, Jiang and Li [37] proposed a necessary
and sufficient SDC condition under the existence assumption of a
semidefinite matrix pencil. After this result, an open question still
remains to be investigated: solving the SDC problem of more than
two real symmetric matrices without semidefinite matrix pencil as-
sumption? In 2020, Bustamante et al. [11] proposed a necessary
and sufficient condition for a set of complex symmetric matrices to
be SDC by equivalently rephrasing the SDC problem as the classical
problem of simultaneous diagonalization via similarity (SDS) of a
new related set of matrices. A procedure to determine in a finite
number of steps whether or not a set of complex symmetric matri-
ces is SDC was also proposed. However, the SDC results of complex
symmetric matrices may not hold for the real setting. That is, even
the given matrices C1, C2, . . . , Cm are all real, the resulting matri-
ces R and RT CiR may have to be complex, please see Example 16
[11] and also in Example 2.1.7. Apparently, the SDC of complex
symmetric matrices does also not hold for the Hermitian matrices,
please see Theorem 4.5.15 [34], Example 2.1.7.

The dissertation is organized as follows. In Chapter 1 we
present some related concepts and obtained results so far of the SDC
problem including the SDC of real symmetric matrices, complex
symmetric matrices and Hermitian matrices. In Chapter 2 we first
focus on solving the SDC problem of Hermitian matrices, i.e., when
Ci are all Hermitian. This part is based on the results in [42]. The
main contributions of this part are as follows.


 We develop sufficient and necessary conditions (see Theorems

4



2.1.4 and 2.1.5) for a collection of finitely many Hermitian ma-
trices to be simultaneously diagonalizable via �-congruence. The
proofs use only matrix computation techniques;


 Interestingly, one of the conditions shown in Theorem 2.1.5 re-
quires the existence of a positive definite solution of a system of
linear equations over Hermitian matrices. This leads to the use
of the SDP solvers (for example, SDPT3 [63]) for checking the
simultaneous diagonalizability of the initial Hermitian matrices.
In case the matrices are SDC, i.e., such a positive definite solu-
tion exists, we apply the existing Jacobi-like method in [10], [43]
to simultaneously diagonalize the commuting Hermitian matrices
that are the images of the initial ones under the congruence de-
fined by the square root of the above positive definite solution.
The Hermitian SDC problem is hence completely solved. As a
consequence, this solves the long-standing SDC problem for real
symmetric matrices mentioned as an open problem in [30], and
for arbitrary square matrices since any square matrix is a sum-
mation of its Hermitian and skew Hermitian parts (see Theorem
2.1.6);


 In line with giving the equivalent condition that requires the max-
imum rank of Hermitian pencils (Theorem 2.1.2), we suggest a
Schmüdgen-like algorithm for finding such the maximum rank in
Algorithm 2. This methodology may also be applied in some other
simultaneous diagonalizations, for example, that in [11];


 Finally, we propose corresponding algorithms the most impor-
tant one of which is Algorithm 6 for solving the Hermitian SDC
problem. These are implemented in Matlab. The main algo-
rithm consists of two stages which are summarized as follows:
For C1, . . . , Cm P Hn,

Stage 1: Checking if there is a positive definite matrix P solv-
ing an appropriate semidefinite program based on The-
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orem 2.1.5 iii). Our main contribution stays in this
part.

Stage 2: If such a P exists then applying Algorithm 5 [10],
[43] to find a unitary matrix V that simultaneously
diagonalizes the new commuting Hermitian matrices?

PCi

?
P , i � 1, . . . , m.

The second part of Chapter 2 is based on [49], which focuses
on the SDC problem of the real symmetric matrices, i.e., when Ci

are all real symmetric. Although, in Theorem 2.1.5, our results (i)-
(iii) on the Hermitian matrices can also apply to the real setting, get
we find that the decomposition techniques for two matrices in [37]
can be generalized to construct an inductive procedure for the SDC
problem of C with m ¥ 3. The approach based on [37] may be better
than the SDP one, please see Example 2.2.2. To this end the collec-
tion C is divided into two cases: the nonsingular collection, denoted
by Cns, when at least one Ci P C is non-singular. Without loss of
generality, we always assume that C1 is non-singular. On the other
hand, the singular collection, denoted by Cs, when all C 1

is in C are
non-zero but singular. For the nonsingular collection Cns, the argu-
ments first apply to tC1, C2u; if C1, C2 are SDC then a matrix Qp1q

is constructed at the first iteration such that C
p1q
2 :� pQp1qqT C2Qp1q

is a non-homogeneous dilation of C
p1q
1 :� pQp1qqT C1Qp1q, while

C
p1q
j :� pQp1qqT CjQp1q, j ¥ 3 share the same block diagonal struc-

ture of C
p1q
1 , please see Lemma 2.2.2 and Remark 2.2.1 below. At

the second iteration, tCp1q
1 , C

p1q
3 u are checked. If C

p1q
1 , C

p1q
3 are SDC,

then Qp2q is constructed such that C
p2q
3 :� pQp2qqT C

p1q
3 Qp2q and

C
p2q
2 :� pQp2qqT C

p1q
2 Qp2q are non-homogeneous dilations of C

p2q
1 :�

pQp2qqT C
p1q
1 Qp2q. Next, tCp2q

1 , C
p2q
4 u are considered at the third step;

and so forth. These results are presented in Sect. 2.2.1. For the sin-
gular collection Cs, we also begin with tC1, C2u. If C1, C2 are SDC,
we find a nonsingular matrix U1 to get

Ĉ1 :� UT
1 C1U1 � diagppC11qp1 , 0n�p1q, p1   n,
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Ĉ2 :� UT
1 C2U1 � diagppC21qp1 , 0n�p1q

such that pC11qp1 , pC21qp1 are SDC and pC21qp1 is nonsingular. At
the second step, we consider the SDC of Ĉ1, Ĉ2 and Ĉ3 � UT

1 C3U1.

If they are SDC, we find a nonsingular matrix U2 to get

C̆1 :� UT
2 Ĉ1U2 � diagppC11qp2 , 0n�p2q, p1 ¤ p2,

C̆2 :� UT
2 Ĉ2U2 � diagppC21qp2 , 0n�p2q,

C̆3 :� UT
2 Ĉ3U2 � diagppC31qp2 , 0n�p2q

such that pC11qp2 , pC21qp2 , pC31qp2 are SDC and pC31qp2 is nonsin-
gular; and so forth. By this way, we show that if Cs is SDC,
we can create a new collection C̃s � tC̃1, C̃2, . . . , C̃mu such that
C̃i � diagppCi1qp, 0n�pq, p ¤ n, and pCpm�1q1qp is nonsingular. Im-
portantly, the given collection Cs is SDC if and only if pC11qp, pC21qp,

. . . , pCpm�1q1qp, pCm1qp are SDC. Therefore, we move from the SDC
of a singular collection to the SDC of a nonsingular collection; please
see Theorem 2.2.3 in Sect. 2.2.2.

Chapter 3 is devoted to presenting some applications of the
SDC results. We first show how to explore the SDC properties of two
real symmetric matrices C1, C2 to compute the positive semidefinite
interval I©pC1, C2q � tµ P R : C1 � µC2 © 0u of matrix pencil C1 �
µC2. Indeed, we show that if C1, C2 are not SDC, then I©pC1, C2q
has at most one value µ, while if C1, C2 are SDC, I©pC1, C2q could
be empty, a singleton set or an interval. Each case helps to analyze
when the GTRS is unbounded from below, has a unique Lagrange
multiplier or has an optimal Lagrange multiplier µ� in a given closed
interval. Such a µ� can be computed by a bisection algorithm. This
results follow from [47]. The next application will be for QCQP
which takes the following format

pQCQPq min xT C1x� 2aT
1 x

s.t. xT Cix� 2aT
i x� bi ¤ 0, i � 2, . . . , m,

where ai P Rn, bi P R. We show that if the matrices Ci in the ob-
jective and constraint fucntions are SDC, the QCQP can be relaxed
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to a convex SOCP problem. In general, the ralaxation admits a
positive gap. That is, the optimal value of the relaxed SOCP is
strictly less than that of the primal QCQP. The cases with a tight
ralaxation will be presented in that chapter. Especially, if the ma-
trices Ci are SDC and the QCQP is homogeneous, i.e., ai � 0 for
i � 1, 2, . . . , m, then QCQP is reduced to a linear programming
after two times of changing variables. A special case of the homoge-
neous QCQP, which minimizes a quadratic form subjective to two
homogeneous quadratic constraints over the unit sphere [46], is re-
duced to a linear programming problem on a simplex if the matrices
are SDC. Finally, we show the applications for solving a generalized
Rayleigh quotient problem which maximizes a sum of generalized
Rayleigh quotients.
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Chapter 1

Preliminaries

1.1 Some prepared concepts for the SDC
problems

Let us begin with some notations:

• The matrices C1, C2, . . . , Cm P Hn are said to be SDC on C,

shortly written as �-SDC, if there exists a nonsingular matrix
P P Cn�n such that every P�CiP is diagonal in Rn�n.

• The matrices C1, C2, . . . , Cm P Sn are said to be SDC on R,

shortly written as R-SDC, if there exists a nonsingular matrix
P P Rn�n such that every P T CiP is diagonal in Rn�n.

• Matrices C1, C2, . . . , Cm P SnpCq are said to be SDC on C if
there exists a nonsingular matrix P P Cn�n such that every
P T CiP is diagonal in Cn�n. We also abbreviate this as C-
SDC.
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1.2 Existing SDC results

Lemma 1.2.1. ([27], p.255) Two matrices C1, C2 P Sn, with C1

nonsingular, are R-SDC if and only if C�1
1 C2 is real similarly diag-

onalizable.

Lemma 1.2.6. ([37], Lemma 5) For any two matrices C1, C2 P Sn

singular, there always exists a nonsingular matrix U such that

Ã :� UT C1U �
�

A1 0p�pn�pq

0pn�pq�p 0n�p

�
(1.1)

and

B̃ :� UT C2U �

�
�� B1 0p�q B2

0q�p B3 0q�r

BT
2 0r�q 0r

�
�
 (1.2)

where p, q, r ¥ 0, p � q � r � n, A1, B3 is a nonsingular diagonal
matrix.

Lemma 1.2.8. Let both C1, C2 P Sn be non-zero singular with
rankpC1q � p   n. There exists a nonsingular matrix U1, such that

C̃1 � UT
1 C1U1 �

�
�� pC11qploomoon

invert. & diag.

0

0 0n�p

�
�
, (1.3)

C̃2 � UT
1 C2U1 �

�
pC21qp C22

CT
22 0n�p

�
, (1.4)

or

C̃2 � UT
1 C2U1 �

�
����
pC21qp 0 C25

0 pC26qs1loomoon
invert. & diag.

0

CT
25 0 0n�p�s1

�
���
. (1.5)

10



where C11, C26 are nonsingular diagonal matrices; s1 ¤ n � p. If
s1 � n� p then C25 does not exist.

Lemma 1.2.9. ([37], Theorem 6) Two singular matrices C1 and
C2, which take the forms (1.1) and (1.2), respectively, are R-SDC
if and only if A1 and B1 are R-SDC and B2 is a zero matrix or
r � n� p� s1 � 0 (B2 does not exist).

Theorem 1.2.1. Let C1 and C2 be two symmetric singular matrices
of n� n. Let U1 be the nonsingular matrix that puts C̃1 � UT

1 C1U1

and C̃2 � UT
1 C2U1 into the format of (1.3) and (1.4) in Lemma 1.2.

Then, C̃1 and C̃2 are R-SDC if and only if C11, C21 are R-SDC and
C22 � 0p�r, where r � n� p.
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Chapter 2

Solving the SDC
problems of Hermitian
matrices and real
symmetric matrices

2.1 The Hermitian SDC problem

2.1.1 The max-rank method

Theorem 2.1.1. Let C � Cpλq P Frλsn�n be a Hermitian pencil,
i.e, Cpλq� � Cpλq for every λ P Rm. Then there exist polynomial ma-
trices X�,X� P Frλsn�n and polynomials b, dj P Rrλs, j � 1, 2, . . . , n

(note that b, dj are always real even when F is the complex field) such
that

X�X� � X�X� � b2In (2.1a)
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b4C � X�diagpd1, d2, . . . , dnqX��, (2.1b)
X�CX

�
� � diagpd1, d2, . . . , dnq. (2.1c)

Ck�1 �
�

αk βk

β�k Ĉk

�
,Ck � αkpαkĈk � β�k βkq, b �

k¹
t�1

αt,

Xk� � Xpk�1q�.

�
αkI 0

0 Yk�

�
,Xk� �

�
αkIk�1 0

0 Yk�

�
.Xpk�1q�,

Xk�CX
�
k� �

�
diagpd1, d2, . . . , dk�1, dkq 0

0 Ck

�
:� C̃k,

(2.2)

where Yk� �
�

αk 0
�β�k αkIn�k

�
and

dk � α3
k, dj � α3

j

k¹
t�j�1

α2
t , j � 1, 2, . . . , k � 1. (2.3)

Theorem 2.1.2. Use notation as in Theorem 2.1.1, and suppose
Ck in p2.2q is diagonal but every Ct, t � 0, 1, . . . , k � 1, is not so.
Consider the modification of p2.2q as

Ck�1 �
�

αk βk

β�k Ĉk

�
, Ck � αkpαkĈk � β�k βkq,

Xk� �
�

Ik�1 0
0 Yk�

�
.Xpk�1q�, Yk� �

�
αk 0
�β�k αkIn�k

�
,

Xk�CX
�
k� �

�
diagpα3

1, α3
2, . . . , α3

k�1, α3
kq 0

0 Ck

�
:� C̃k,

(2.4)

Moreover, let di � α3
i , i � 1, 2, . . . , k, and Ck � diagpdk�1, dk�2, . . . , dnq,

dj P Rrλs, j � 1, 2, . . . , n, and some of dk�1, dk�2, . . . , dn may be
identically zero. The following holds true.
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(i) αt divides αt�1 (and therefore dt divides dt�1) for every t ¤
k � 1, and if k   n, then αk divides every dj , j ¡ k.

(ii) The pencil Cpλq has the maximum rank r if and only if there
exists a permutation such that C̃pλq � diagpd1, . . . , dr, 0, . . . , 0q,
dj is not identically zero for every j � 1, 2, . . . , r. In addi-
tion, the maximum rank of Cpλq achieves at λ̂ if and only if
αkpλ̂q � 0 or p±r

t�k�1 dtpλ̂qq � 0, respectively, depends upon
Ck being identically zero or not.

Theorem 2.1.3. The matrices I, C1, . . . , Cm P Hn, m ¥ 1 are �-
SDC if and only if they are commuting. Moreover, when this the
case, there are �-SDC by a unitary matrix (resp., orthogonal one)
if C1, . . . , Cm are complex (resp., all real).

Theorem 2.1.4. Let 0 � C1, C2, . . . , Cm P Hn with dimCp
�m

t�1 kerCtq
� q, (always q   n.)

1. If q � 0, then the following hold:

(i) If detCpλq � 0, for all λ P Rm (over only real m-tuple
λ), then C1, . . . , Cm are not �-SDC.

(ii) Otherwise, there exists λ P Rm such that detCpλq �
0. The matrices C1, . . . , Cm are �-SDC if and only if
Cpλq�1C1, . . . ,Cpλq�1Cm pairwise commute and every
Cpλq�1Ci, i � 1, 2, . . . , m, is similar to a real diagonal
matrix.

2. If q ¡ 0, then there exists a nonsingular matrix V such that

V �CiV � diagpĈi, 0qq,@i � 1, . . . , m, (2.5)

where 0q is the q�q zero matrix and Ĉi P Hn�q with
�m

t�1 kerĈt

� 0. Moreover, C1, C2, . . . , Cm are �-SDC if and only if Ĉ1, Ĉ2, . . . , Ĉm

are �-SDC.
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2.1.2 The SDP method

Theorem 2.1.5. The following conditions are equivalent:

(i) The matrices C1, C2, . . . , Cm P Hn are �-SDC.

(ii) There exists a nonsingular matrix P P Cn�n such that P�C1P,

. . . , P�CmP commute.

(iii) There exists a positive definite X � X� P Hn that solves the
following systems:

CiXCj � CjXCi, 1 ¤ i   j ¤ m. (2.6)

We note that the theorem is also true for the real setting: If Ci’s
are all real then the corresponding matrices P, X in all conditions
above can be all picked to be real.

Let HpAq � 1
2 pA � A�q, SpAq � 1

2 pA � A�q � �SpAq�. We
further note that both HpAq and iSpAq are Hermitian matrices.

Theorem 2.1.6. (see, e.g., in Section 1.7, Problem 18 [35]) The
square matrices A1, . . . , Am P Fn�n are �-SDC if and only if so are
HpAtq, iSpAtq, t � 1, . . . , m.

2.2 An alternative solution method for
the SDC problem of real symmetric
matrices

2.2.1 The SDC problem of nonsingular collection

Theorem 2.2.1. Let Cns � tC1, C2, . . . , Cmu � Sn, m ¥ 3 be a
nonsingular collection with C1 invertible. Suppose for each i the
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matrix C�1
1 Ci is real similarly diagonalizable. If CjC�1

1 Ci are sym-
metric for 2 ¤ i   j ¤ m, then there always exists a nonsingular
real matrix R such that

RT C1R �diagpA1, A2, . . . , Asq,
RT C2R �diagpα2

1A1, α2
2A2, . . . , α2

sAsq, (2.7)
. . . . . .

RT CmR �diagpαm
1 A1, αm

2 A2, . . . , αm
s Asq,

where A1
ts are nonsingular and symmetric, αi

t, t � 1, . . . , s, are real
numbers.

Theorem 2.2.2. Let Cns � tC1, C2, . . . , Cmu � Sn, m ¥ 3 be
a nonsingular collection with C1 invertible. The collection Cns is
R-SDC if and only if for each 2 ¤ i ¤ m, the matrix C�1

1 Ci is
real similarly diagonalizable and CjC�1

1 Ci, 2 ¤ i   j ¤ m are all
symmetric.

2.2.2 The SDC problem of singular collection

Theorem 2.2.3. Let Cs � tC1, C2, . . . , Cmu � Sn, m ¥ 3 be a
singular collection in which none is zero. If C1, C2, . . . , Cm�1 are
R-SDC, then there exist a nonsingular real matrix Q and a positive
vector µ � pµ1, µ2, . . . , µm�2, 1q P Rm�1

�� such that

C̃1 � QT C1Q � diagppC11qp, 0n�pq, p   n;
...

C̃m�1 � QT pµm�2p� � � � Cm�2q � Cm�1qQ � diagppCpm�1q1qp, 0n�pq;

and either

C̃m � QT CmQ �
�
pCm1qp Cm2

CT
m2 0n�p

�
; (2.8)
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or

C̃m � QT CmQ �

�
��pCm1qp 0 Cm5

0 pCm6qs 0
CT

m5 0 0n�p�s

�
�
, (2.9)

where

• the sub-matrices pCi1qp, i � 1, 2, . . . , m� 1, are all diagonal of
the same size. In particular, pCpm�1q1qp is nonsingular;

• in (2.8), pCm1qp is symmetric;

• in (2.9), pCm1qp is symmetric, pCm6qs is nonsingular diago-
nal; Cm5 is either a p�pn� p� sq matrix if s   n� p or does
not exist if s � n� p.

Moreover, the following three statements are equivalent.

(i) all matrices in the collection Cs are R-SDC;

(ii) all matrices in the collection C̃s � tC̃1, . . . , C̃mu are R-SDC;

(iii) either sub-blocks C11, . . . , Cm1 with Cm1 coming from (2.8) are
R-SDC and Cm2 � 0; or sub-blocks C11, . . . , Cm1 with Cm1

coming from (2.9) are R-SDC and either Cm5 � 0 or Cm5

does not exist.

17



Chapter 3

Some applications of
the SDC results

3.1 Computing the positive semidefinite
interval

3.1.1 Computing I©pC1, C2q when C1, C2 are R-SDC

Theorem 3.1.1. Suppose C1, C2 P Sn are R-SDC and C2 is non-
singular and λ1, λ2, . . . , λk are the k eigenvalues of C�1

2 C1, where
λ1 ¡ λ2 ¡ . . . ¡ λk.

1. If C2 ¡ 0 then I©pC1, C2q � r�λk,�8q;

2. If C2   0 then I©pC1, C2q � p�8,�λ1s;

3. If C2 is indefinite then

(i) if B1, B2, . . . , Bt ¡ 0 and Bt�1, . . . , Bk   0 for some
t P t1, 2, . . . , ku, then I©pC1, C2q � r�λt,�λt�1s,
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(ii) if B1, B2, . . . , Bt�1 ¡ 0, Bt is indefinite and Bt�1, . . . , Bk

  0, then I©pC1, C2q � t�λtu,
(iii) in other cases, that is either Bi, Bj are indefinite for

some i � j or Bi   0, Bj ¡ 0 for some i   j or Bi is in-
definite and Bj ¡ 0 for some i   j, then I©pC1, C2q � H.

Theorem 3.1.2. Suppose C1, C2 P Sn are R-SDC, C2 is singular
and C1 is nonsingular. Then

(i) there always exists a nonsingular matrix U such that UT C2U �
diagpB1, 0q, UT C1U � diagpA1, A3q, where B1, A1 are sym-
metric of the same size, B1 is nonsingular;

(ii) if A3 ¡ 0 then I©pC1, C2q � I©pA1, B1q. Otherwise, I©pC1, C2q
� H.

For any C1, C2 P Sn, there always exists a nonsingular matrix
U such that

C̃2 � UT C2U �
�

B1 0p�r

0r�p 0r�r

�
; C̃1 � UT C1U �

�
A1 A2

AT
2 0r�r

�

(3.1)
or

C̃1 � UT C1U �

�
�� A1 0p�s A2

0s�p A3 0s�pr�sq

AT
2 0pr�sq�s 0pr�sq�pr�sq

�
�
, (3.2)

where A3 is a nonsingular diagonal matrix; p, r, s ¥ 0, p� r � n.

Now suppose that C1, C2 are R-SDC, without loss of gener-
ality we always assume that C̃2, C̃1 are already R-SDC. That is

C̃2 � UT C2U � diagpB1, 0q, C̃1 � UT C1U � diagpA1, 0q (3.3)

or

C̃2 � UT C2U � diagpB1, 0q, C̃1 � UT C1U � diagpA1, A4q, (3.4)

where A1, B1 are of the same size and diagonal, B1 is nonsingular.
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Theorem 3.1.3. (i) If C̃2, C̃1 take the form p3.3q, then I©pC1, C2q
� I©pA1, B1q;

(ii) If C̃2, C̃1 take the form p3.4q, then I©pC1, C2q � I©pA1, B1q if
A4 © 0 and I©pC1, C2q � H otherwise.

3.1.2 Computing I©pC1, C2q when C1, C2 are not
R-SDC

Theorem 3.1.4. Let C1, C2 P Sn be as in Lemma 3.1.2 and C1, C2

are not R-SDC. The followings hold.

(i) if C1 © 0 then I©pC1, C2q � t0u;
(ii) if C1 « 0 and there is a real eigenvalue λl of C�1

2 C1 such that
C1 � p�λlqC2 © 0 then I©pC1, C2q � t�λlu;

(iii) if (i) and (ii) do not occur then I©pC1, C2q � H.

Theorem 3.1.5. Let C1, C2 P Sn be not R-SDC. Suppose C1 is
nonsingular and C�1

1 C2 has real Jordan normal form diagpJ1, . . . Jr,

Jr�1, . . . , Jmq, where J1, . . . , Jr are Jordan blocks corresponding to
real eigenvalues λ1, λ2, . . . , λr of C�1

1 C2 and Jr�1, . . . , Jm are Jor-
dan blocks for pairs of complex conjugate roots λi � ai � ibi, ai, bi P
R, i � r � 1, r � 2, . . . , m of C�1

1 C2.

(i) If C1 © 0 then I©pC1, C2q � t0u;
(ii) If C1 « 0 and there is a real eigenvalue λl � 0 of C�1

1 C2 such

that C1 �
�
� 1

λl



C2 © 0 then I©pC1, C2q �

"
� 1

λl

*
;

(iii) If cases piq and piiq do not occur then I©pC1, C2q � H.

Theorem 3.1.6. Given C1, C2 P Sn are not R-SDC and singular
such that C̃1 and C̃2 take the forms in either (3.1) or (3.2) with A2 �
0. Suppose that I©pA1, B1q � ra, bs, a   b. Then, if a R I©pC1, C2q
and b R I©pC1, C2q then I©pC1, C2q � H.
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3.2 Solving the quadratically constrained
quadratic programming

A QCQP problem with m constraints takes the following for-
mat

pPmq min f0pxq � xT C0x� aT
0 x

s.t. fipxq � xT Cix� aT
i x� bi ¤ 0, i � 1, 2, . . . , m,

where Ci P Sn, x, ai P Rn and bi P R. We show that if C0, C1, . . . , Cm

are R-SDC, pPmq is relaxed to convex second-order cone problem

pSPmq
min f0py, zq � αT

0 z � ξT
0 y

s.t. fipy, zq � αT
i z � ξT

i y � bi ¤ 0, i � 1, 2, . . . , m,

y2
j ¤ zj , j � 1, 2, . . . , n.

(3.5)

pSPmq can be solved in polynomial time by the interior algo-
rithm [21].

3.3 Applications for maximizing a sum
of generalized Rayleigh quotients

We consider the following simplest case of the sum:

max
x�0

xT A1x

xT B1x
� xT A2x

xT B2x
, (3.6)

where B1 ¡ 0, B2 ¡ 0.

By a change of variables, (3.6) is reduced to

max
}y}�1

yT Dy � yT Ay

yT By
, B ¡ 0. (3.7)

Theorem 3.3.1. ([72]) If A, B, D are R-SDC by an orthogonal con-
gruence matrix then (3.7) is reduced to a one-dimensional maximiza-
tion problem over a closed interval.
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Conclusions

In this dissertation, the SDC problem of Hermitian matri-
ces and real symmetric matrices has been dealt with. The results
obtained in the dissertation are not only theoretical but also algo-
rithmic. On one hand, we proposed necessary and sufficient SDC
conditions for a set of arbitrary number of either Hermitian ma-
trices or real symmetric matrices. We also proposed a polynomial
time algorithm for solving the Hermitian SDC problem, together
with some numerical tests in MATLAB to illustrate for the main
algorithm. The results in this part immediately hold for real Hermi-
tian matrices, which is known as a long-standing problem posed in
[30]. In addition, the main algorithm in this part can be applied to
solve the SDC problem for arbitrarily square matrices by splitting
the square matrices up into Hermitian and skew-Hermitian parts.
On the other hand, we developed Jiang and Li’ technique [37] for
two real symmetric matrices to apply for a set of arbitrary number
of real symmetric matrices.

1. Results on the SDC problem of Hermitian matrices.


 Proposed an algorithm for solving the SDC problem of
commuting Hermitian matrices (Algorithm 3);


 Solved the SDC problem of Hermitian matrices by max-
rank method (please see Theorem 2.1.4, Algorithm 4);


 Proposed a Schmüdgen-like method to find the maximum
rank of a Hermitian matrix-pencil (please see Theorem
2.1.2 and Algorithm 2);


 Proposed equivalent SDC conditions of Hermitian matri-
ces linked with the existence of a positive definite matrix
satisfying a system of linear equations (Theorem 2.1.5);


 Proposed an algorithm for completely solving the SDC
problem of complex or real Hermitian matrices (please
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see Algorithm 6).

2. Results on the SDC problem of real symmetric matrices.


 Proposed necessary and sufficient SDC conditions for a
collection of real symmetric matrices to be SDC (please
see Theorem 2.2.2 for nonsingular collection and Theo-
rem 2.2.3 for singular collection). These results are com-
pleteness and generalizations of Jiang and Li’s method
for two matrices [37];


 Proposed an inductive method for solving the SDC prob-
lem of a singular collection. This method helps to move
from study the SDC of a singular collection to study the
SDC of a nonsingular collection of smaller dimension as
shown in Theorem 2.2.3. Moreover, we realize that a re-
sult by Jiang and Li [37] is not complete. A missing case
not considered in their paper is now added to make it up
in the dissertation, please see Lemma 1.2.7 and Theorem
1.2.1;


 Proposed algorithms for solving the SDC problems of
nonsingular and singular collection (Algorithm 7 and Al-
gorithm 8, respectively).

3. We apply above SDC results for dealing with the following
problems.


 Computed the positive semidefinite interval of matrix
pencil C1 � µC2 (please see Theorems 3.1.1, 3.1.2, 3.1.3,
3.1.4, 3.1.5 and 3.1.6);


 Applied the positive semidefinite interval of matrix pencil
for completely solving the GTRS (please see Theorems
3.2.1, 3.2.2);


 Solved the homogeneous QCQP problems, the maximiza-
tion of a sum of generalized Rayleigh quotients under the
SDC of involved matrices.
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Future research

The SDC problem has been completely solved on the field of
real numbers R and complex numbers C. A natural question to aks
is whether the obtained SDC results are remained true on a finite
field? on a commutative ring with unit? Moreover, as seen, the SDC
conditions seem to be very strict. That is, not too many collections
can satisfy the SDC conditions. This raises a question that how
much disturbance on the matrices such that a not SDC collection
becomes SDC? Those unsloved problems suggest our future research
as follows.

1. Studying the SDC problems on a finite field, on a commutative
ring with unit;

2. Studying the approximately simultaneous diagonalization via
congruence of matrices. This problem can be stated as follows:
Suppose the matrices C1, C2, . . . , Cm, are not SDC. Given ϵ ¡
0, whether there are matrices Ei with }Ei}   ϵ such that
C1 � E1, C2 � E2, . . . , Cm � Em are SDC?

Some results on approximately simultaneously diagonalizable
matrices for two real matrices and for three complex matrices
can be found in [50], [61], [68].

3. Explore applications of the SDC results.
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